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A NEW HEPARIN-LIKE FPAGMW! CoNllAINING Tw 3*SULPxiATED GLXw%lINES 
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Organon International B.V., Scientific Development Group, 

P.O. Box 20, 5340 BH Oss, The Netherlands 

El!- synthesis of a pentasaccharide corresponding to the antithrombin III binding region of 
heparin, but containing an extra 3-O-sulphate group at the reducing end, is described. This 
compound elicits higher anti-xa activity than the antithrcmbin III binding region of heparin. 

It is well established now that the minimal antithrombin III (AT-III) binding region of heparin 

consists of an unique pentasaccharide fragment’. This pentasaccharide, which has become synthe- 

tically available’, catalyzes the AT-III mediated inactivation of factor Xa (anti-Xa activity), 

but not of thrombin. 

In this conmwication we wish to introduce a very potent synthetic analogue (i.e. compound 1 in 

Fig. 1) of the naturally occurring fragment, containing an additional 3-O-sulphate group at the 

reducing glucosemine-unit 6 3 (see asterisk in Fig.1). This enslogue displays en anti-Xe activity 

of about 1270 UjYq in en amidolytic assay’, whereas the synthetic pentasaccharide corresponding to 
the AT-III binding site of hepsrin, displays 590 anti-Xa U& . The higher activity of analogue 1 
has to be attributed to the presence of the additional 3-O-sulphate group. In this respect, it is 

important to note that the B-O-sulphate group at glucosamine unit 2 ‘, the 3+sulphate’ Md 

N-sulphate’ groups at glucosamine unit 4, as well as the carboxylate moiety of iduronic acid unit 

5 ’ are essential (II in Fig. 1) for activation of AT-III. In addition, the 24sulphate at idu- 
ronic acid unit 5 lo and the 6-O-sulphate” and N-sulphate’ groups of glucosaraine unit 6 increase 

(I in Fig. 1) the AT-III mediated activity. On the other hand the N-sulphate (N-acetyl) group at 
unit 21b*’ and the C+sulphate at unit 4 l2 are considered to be non-essential (x in Fig. 1). 

Fig.1 “~~~~~~~~~~~~ 
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Fig.2 I binding site -2 
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Taking into consideration these findings, the heparin-binding site of AT-III can be mapped around 

a molecular model9 ’ ’ ’ ’ of the naturally occurring heparin pentasaccharide (Fig. 2). In Fig.2 one 

can see that the pentasaccharide exhibits a linear conformation with binding areas at the south- 

and north site of the molecule (i.e. AT-III binding sites 1 and 2, respectively). The higher 

activity of compounds, relative to the naturally occurring heparin fragment, can be tentatively 

ascribed to its enhanced interaction with AT-III at binding site-2, brought about by the extra 

3-O-sulphate group (In Fig.2 this sulphate group would be located at the position of the 

asterisk * ). 

The synthesis of compouod 1 is outlined in the Scheme. Following a well-established strategy2”‘” 

the fully protected pentasaccharide 2 should be prepared, containing acetyl functions at hydroxyl 

functions to be sulphated and benzyl protective groups for unsulphated hydroxyl groups. 

We started the synthesis” from easily available methyl 4,6-O-benzylidene-2+enzyloxycarbonyl- 

amino-2-deoxy-o-D-glucopyranoside15, which was acetylated in acetic anhydride/pyridine and then 

treated with aqueous acetic acid to afford _3a (90% yield). Compouhd _3a was selectively benzoylated 

at the primary hydroxyl group to afford compound jb in 79% yield. 

Since coupling of the unreactive compound jb with known b-idopyranosyl bromide derivative sa2b was 

disappointing we turned attention to the corresponding fluoride derivative zb. Treatment of 

1,2,4,6-tetra-O-acetyl-3+benzyl-Gidopyrauose2b with 70% hydrogen fluoride/pyridine in 

dichloromethane for 4 h at OOC, gave after work-up and chromatography pure pb in 60% yield (lH-WWR 

(CDCl,), 6 - 5.70 (dd, J-48 Hz, J=3Hz, H-l). Condensation of compounds 2b sod ?b in the presence 

of borontrifluoride etherate gave disaccharide A. Conversion of i into the desired iduronic 

acid-glucosamine building block 4 has been performed as described recently in similar 

syntheses” ’ l1 . First, compouhd~ was m-protected in seven Steps to gives. OxidatiOxI of COmpOUnd 

2 with d-mmium (vi) oxide was followed by diazomethane treatment sod deprotection of the levuli- 

noyl ester to give compound _6 ([orli” - 20.5, c = 1, dichloromethane). 
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9 40 R=Lev 
b R=H 

SCHEME 
c n.o.pJd 
1 

Scheme: a) BF, -etherate, I48 4A, CIi,Cl, , -20°c, (73%); b) KOt8u,NeOH/dioxane, RT; c) 2,l-dimthoxy 
propane, pTs, DHF, RT, Wc, 90%); dl AcZO, pyridine, 35Oc; e) AcQH/H,O, 40°C, (d+e, 93%); f) 

Dimethoxytsity~ chloride, THF/Wridine, -6OC; g) kvulinoic acid anhydride, Tm/pyridine, RT; h) 

ACOH/H,O,RT, (f+h, 85%);i) CrO,, acetone, O'C; j) CI$N,, cH,Cl,, RT, (14, 85%); k) HZ-, m, 

pyridine, RT, (83%); 1) Ag80sCF,, IW lOA, CHsCll, -3O'C, (58%); m) Agso,CF, I s 4A, 

2,6-di-t-butylpyridine, cH,Cl,, -55OC, (80%); n) NaOH, H,O/?teOH/CHCl,, RT, (55%); 0) SO,N(C$),, 

m, 50°c, (55%); p) Ii,, we, ~eOIwi,o, RT; q) SO,N(CIi,), , NalC$, H,O, RT, (P+% 70%). 

Abbreviations: Bn - benzyl, Bz = benaoyl, AC - acetyl, LeV I levulinoyl, 2 - benzyloxycarbonyl 
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Reaction of 5 with known glycon 12b, in the presence of silver triflate and molecular sieves, gave 

tetrasaccharide ga. Compound sb was obtained after hydrasinolysis of the levulinoyl group. Coup- 

ling of excess of 2 with 8b in the presence of silver triflate and 2,6+X-t-butylpyridine gave, 

after purification, the fully protected pentasaccharide g ([cr]:’ - 44.7; c - 0.9, dichloro- 

methane)16. Finally, in the following four-step procedure the fully protected derivative g was 

converted into analogue 1: i) simultaneous saponification of acetyl esters and carboxyl-methyl 

esters; ii) G-sulphation, Sephadex LH-20 chromatography; iii) hydrogenolysis; iv) N-sulphation. 

The crude product was purified by Sephadex DKAK chromatography and then desalted (Sephadex GlO) . 

The structure of compound !, was confirmed by a-dimensional proton-proton correlated spectroscopy 

(ZD-CGSY)“. Most remarkably, the a-L-iduronic acid part of compound 1 adopts (in D,O) mainly the 

2 S, skew boat conformation13b’1n, whereas a-tiduronic acid in the natural occurring pentasac- 

charide occurs in an equilibrium between 2S, and ‘C, forms (ratio about 2:1)19 ’ 2o . 
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